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The long jump is one of the most
natural events in track and field

athletics. The jumper is allowed to
run a 40-m runway at top speed and
jump as far as possible from a takeoff
board. It is an event in which the nat-
ural ability of the athlete plays a large
role and technique is of secondary
importance. The two most important
factors in the long jump are speed and
elevation. This is exemplified by the
fact that two of the greatest long
jumpers in history, Jesse Owens and
Carl Lewis, were also the greatest
sprinters of their times. Their jump-
ing ability depended mainly on their
raw speed. Other long-jumping greats
such as Ralph Boston, Bob Beamon,
and Mike Powell (the current world-
record holder) depended more on ele-
vation to compensate for lack of blaz-
ing speed. Ralph Boston, for exam-
ple, made high jumps of 6 ft 9 in.1

What is the optimum launch angle
for maximizing the long jump from a
kinematical point of view? It is well
known that, in the absence of air-
resistance, the optimum launch angle
of a projectile for maximum range on
a horizontal plane is 45�. However,
this is not applicable to the long
jump, where the jumper has to launch
himself at the expense of a part of his
translational kinetic energy before
takeoff.

We first calculate the optimum
launch angle of a long jump in the
horizontal plane neglecting air resist-
ance. This would be the case if the
jumper landed vertically so that his
center of gravity remained at the
same height at launch and landing.
Let v0 be the initial speed of the
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The range R of the projectile on a
horizontal plane is obtained from ele-
mentary kinematics:
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where A = (1 – �) v0
2/g.

Differentiating Eq. (3) twice with
respect to � and simplifying, we get

jumper before takeoff; v1 the launch
speed; and � the launch angle of the
jumper (Fig. 1). The total energy
before takeoff is then E0 = ½mv0

2,
which is of translational kinetic form.
A fraction � of this energy is wasted
as heat and sound.2,3 Another part,
�E, is converted into the energy of
vertical motion: �E = ½mv1

2 sin2�.
The translational kinetic energy of
the jumper after takeoff is E1 =
½mv1

2. By the law of conservation of
energy, we have

E1 = E0 – �E0 – �E (1)

Upon substituting values of the
terms in Eq. (1) and simplifying, we

Fig. 1.  Velocity diagram where v0 is the running speed, v1 the launch speed, and �
the launch angle.

Fig. 2.  Geometry of the long jump:  a and b are distances of centers of gravity of jumper from takeoff
and landing points, respectively; � is the launch angle and � the landing angle.
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Setting dR/d� = 0, we obtain the
optimum launch angle on a horizon-
tal plane: �m = ½ cos–1(1/3) =
35.26�. By substituting this value of
� in Eq. (5), we can confirm that this
corresponds to a launch angle for
maximum range. Notice that this
angle is independent of v0 or �.

In reality, the jumper lands with
his feet in front of his body to further
the jumping distance (Fig. 2). In this
position, the center of gravity of the
jumper is at a distance h below its
level at takeoff and the distance b
between the center of gravity and the
feet is also shorter than that at take-
off, a (see Fig. 2). If � is the angle of
landing, then h = a – bsin�. In this
situation, the distance of the long
jump is given by4

R  =  �

[v1 sin � + (v1
2 sin2� + 2gh)½] + L

(6)

where L = bcos�. On substituting v1
from Eq. (2), we get
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with B = h/A.
In principle, the landing angle �

should be made as small as permissi-
ble, but it must also be numerically
greater than the angle of descent so
that the jumper does not land on his
seat. Experience tells that this angle
is about 45�. With reference to the
definition of �, note that the angle
between the legs and the horizontal is
considerably smaller. Treating L as a
constant, we can find the launch
angle for maximum range analytical-
ly. Differentiating Eq. (7) with

v1cos�
�

g

q(�) = {6 + 4 B + 3 2½ cosec �
[1 + 3 B – (B + 1) cos 2�]½}cos 2�

(10)
Equation (8) may be solved graphi-
cally or using numerical calculation.

For a jumper of Carl Lewis’s
height (1.86 m or 6 ft 2 in), a = 0.93
m. Estimating b to be 0.6 m and � =
45�, we get, approximately, h = 0.51
m and L = 0.42 m. Further, the analy-

respect to �,5 setting the derivative
equal to zero and simplifying, we
arrive at a transcendental equation:

p(�) = q(�)                (8)
where

p(�) = 2 + 12 B + 2½ cosec �
[1 + 3 B – (B + 1) cos 2�]½      (9)

and

Fig. 3.  Distance R as a function of launch angle � for various running speeds vO.

Initial running    Launch speed    Optimum launch      Range       Range
speed (v0, m/s)     (v1, m/s)         angle (�m, deg)        R, m        R, ft-in

10.0 8.35 32.65 7.59 24-11

10.5 8.75 32.87 8.26 27-01

11.0 9.16 33.06 8.96 29-05

11.5 9.57 33.23 9.69 31-09

Table I.  Optimum launch angle for maximum range.
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ses of McFarland2 and Tan3 suggest
that � = 1/10. Calculating both sides
of Eq. (8) using incrementally
increasing launch angles, we obtain
the optimum launch angle for maxi-
mum range �m. Table I displays the
results for various initial speeds v0. It
is evident that �m is now smaller than
the earlier value of 35.26� for the hor-
izontal plane. Also, �m increases
slightly with v0. This is consistent
with expectation since the angle of
incline decreases with increasing v0
and therefore increasing R.

According to model calculations,6

11.5 m/s was the limiting speed of
one of the fastest 100-m runs by Carl
Lewis. Contrary to the much higher
figures stated elsewhere in the litera-
ture,2,7 this is close to the fastest
speed ever achieved by a human.
Table I shows that with such a run-
ning speed, it is theoretically possible
to long jump 9.69 m or 31 ft 9 in.
Because that is over 2 ft longer than
the current world record of 8.95 m or
29 ft 4½ in, this distance may be con-
sidered as the upper limit of long
jumping at the present time. The table
further indicates that in order to bet-
ter the current world record, the
jumper must have a running speed of
at least 11 m/s. In a memorable jump-
ing duel between Carl Lewis and
Mike Powell, both jumpers flirted
with the old world record of nearly 23
years standing held by Bob Beamon
(8.90 m or 29 ft 2½ in) before Mike
Powell actually achieved the current
world mark. Lacking Lewis’s blazing
speed, Powell must have used a high
launch angle to attain his record.

It was estimated that Jesse Owens
used a launch angle of between 25�
and 26�,8 or considerably lower than
the optimum launch angle of �m
derived here. However, this is not so
surprising, considering the fact that
Owens, like Lewis, was a speed

jumper. Other long-jump notables
such as Ralph Boston, Bob Beamon,
Lynn Davies, and Arnie Robinson, all
relied on elevation to attain their dis-
tances.1 Figure 3 shows the depend-
ence of the distance R on the launch
angle for various running speeds. It
reaffirms the fact that the minimum
running speed required to equal or
better the present world mark is 11
m/s. Figure 3 further illustrates that
Carl Lewis, who had registered more
28-ft jumps than all other human
beings combined, and who chased
Beamon’s elusive world mark unsuc-
cessfully at sea level, could, in theo-
ry, have achieved his goal using a
launch angle of as low as 22�.
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